Selasa, 15 Juli 2014

BAB 14 PROPOSISI

Dalam matematika, tidak semua kalimat berhubungan dengan logika. Hanya kalimat yang bernilai benar atau salah saja yang digunakan dalam penalaran. Kalimat tersebut dinamakan proposisi (preposition).
Proposisi adalah kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak dapat sekaligus keduanya. Kebenaran atau kesalahan dari sebuah kalimat disebut nilai kebenarannya (truth value).
Contoh berikut ini dapat mengilustrasikan kalimat yang merupakan proposisi dan mana yang bukan.

Contoh 1.1
a)    6 adalah bilangan genap
b)    Soekarno adalah Presiden Indonesia yang pertama
c)    2 + 2 = 4
d)    Ibukota Provinsi Jawa Barat adalah Semarang
e)    12 ≥ 19
f)     Kemarin hari hujan
g)    Suhu di permukaan laut adalah 21 derajat celcius
h)   Pemuda itu tinggi
i)     Kehidupan hanya ada di Planet Bumi
Semuanya merupakan proposisi. Proposisi a, b, c bernilai benar, tetapi proposisi d salah karena ibukota Jawa Barat seharusnya Bandung dan proposisi e bernilai salah karena seharusnya 12 ≤ 19. Proposisi f sampai I memang tidak dapat langsung ditetapkan kebenarannya, namun satu hal yang pasti, proposisi-proposisi tersebut tidak mungkin benar dan salah sekaligus. Kita bisa menetapkan nilai proposisi tersebut benar atau salah. Misalnya, proposisi f bias kita andaikan benar (hari kemarin memang hujan) atau salah (hari kemarin tidak hujan). Demikian pula halnya untuk proposisi g dan h. Proposisi i bias benar atau salah, karena sampai saat ini belum ada ilmuwan yang dapat memastikan kebenarannya.

Aljabar Proposisi

Hukum-Hukum Aljabar Proposisi (Aturan Penggantian)
Setiap proposisi yang saling ekivalen dapat dipertukarkan atau diganti antara satu dengan yang lainnya. Di bawah ini disajikan daftar aturan penggantian untuk keperluan deduksi.
1. Hukum Idempoten (Idem)
    a. pq ek p
    b. pp ek p
2. Hukum Asosiatif (As)
    a. (pq)r ek p(qr)
    b. (pq)r ek p(qr)
3. Hukum  Komutatif (Kom)
    a. pq ek qp
    b. pq ek qp
4. Hukum Distributif (Dist)
    a. p(qr) ek (pq)(pr)
    b. p(qr) ek (pq)(pr)
5. Hukum Identitas (Id)
    a. pF ek p
    b. pT ek T
    c. pF ek F
    d. pT ek p
6. Hukum Komplemen (Komp)
    a. p∨∼p ek T
    b. p∧∼p ek F
    c. (p) ek p
    d. T ek F
7. Hukum Transposisi (Trans)
    pq ek q⇒∼p
8. Hukum Implikasi (Imp)
    pq ek pq
9. Hukum Ekivalensi (Eki)
    a. pq ek (pq)(qp)
    b. pq ek (pq)(q∧∼p)
10. Hukum Eksportasi (Eksp)
      (pq)r ek p(qr)
11. Hukum De Morgan (DM)
       a. (pq) ek p∧∼q
       b. (pq) ek p∨∼q

Kalimat ingkaran ( Negasi ) adalah suatu pernyataan yang diperoleh dari suatu pernyataan sebelumnya dan mempunyai nilai kebenaran yang berlawanan dengan pernyataan sebelumnya.
Beberapa negasi suatu pernyataan dapat dilihat pada table berikut.

Tabel nilai Kebenaran Negasi :
p
~P
b
S
S
B



Tidak ada komentar:

Posting Komentar